典型的硅漂移探测器具有耗尽区的高电阻硅、一个前接触区和一个收集阳极。入射到前接触区域的 X 射线在硅基体中被吸收并产生电子 - 空穴对。产生的载流子的数量取决于入射 X 射线的能量。接触区和阳极之间预设电场导致这些电子和空穴沿电场线漂移,即向阳极漂移。然后在阳极积累的电荷通过前置放大器转换为电压。入射 X 射线的能量可以通过监测每个脉冲之后,即在每次入射 X 射线被吸收后的电压阶跃幅度来确定。
测量这个电压阶跃的精确度是有限的。这种不精确度正是某给定能量被处理成高斯峰而不是离散峰的原因之一。然而,高斯峰形成的主要原因是入射 X 射线在探测器中产生的电子空穴对的统计学分布。这意味着这些高斯峰的宽度取决于探测器和 X 射线能量。尽管有很多参数可以定义一款检测器的整体性能,但最受认可的参数是这些高斯峰的半高峰宽度 (FWHM),这通常被称为探测器的能量分辨率。实际上,能谱探测器制造商通常使用锰的 Kα 峰半高峰宽值作为标准。对于飞纳能谱探测器,锰 Kα 半高峰宽值 ≤123 eV。
除能量分辨率,在评估能谱系统性能时还应考虑其它几个参数。元素范围是指的是在整个元素周期表中可检测到的所有元素。由于 X 射线接收量与传感器面积大小成线性关系,因此更大面积的探测器具有更高的接收量。在描述接收量时,不得不提到计数率这一概念,它用来描述离开检测器后进行处理的 X 射线。尽管依赖于这个计数率,但实际上不到一半的输入计数被用于识别元素和定量分析。离开数字脉冲处理器 (DPP) 的计数率称为输出计数率,是更相关的参数,因为它反映了真正有用的计数量。飞纳能谱使用 30 mm2(可选 70 mm2)的探测器,元素检测范围为硼 (5) 到锎 (98)。